If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+14x-99=0
a = 4; b = 14; c = -99;
Δ = b2-4ac
Δ = 142-4·4·(-99)
Δ = 1780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1780}=\sqrt{4*445}=\sqrt{4}*\sqrt{445}=2\sqrt{445}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{445}}{2*4}=\frac{-14-2\sqrt{445}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{445}}{2*4}=\frac{-14+2\sqrt{445}}{8} $
| p^2+10=19 | | 4x^2+14x+99=0 | | (2p*p-18p+36)=1 | | -2.9w-3.2=-1.6w+0.31 | | 2x+2(x+8) =164 | | -2.9w−3.2=-6.1w+0.31-2.1w-3.2=-1.6w+0.31 | | X4-45x2-324=0 | | 10y-2y=96-4y | | a+3=9-2 | | 4x2+2x+7=0 | | x^2-66x+9=0 | | -14=-4x-2/3x | | 3a²-12=0 | | 2x2+2x+10=0 | | 2x^2+33x-0.99=0 | | 2x-11=21-3x | | x*(x-3)/2=600 | | x*(x-3)/2=1200 | | X(2)+x(2)=16 | | 7y-13=11 | | (4u^2)+u=0 | | 0=2+9x-4.9x(^2) | | 4=9x=-4=x | | (3x+10)=2×(x+25) | | 2x/12x=0 | | x+3=2x–5 | | 3x+15=2x+18 | | 100*x^2-300=x | | -4x+-2x=10 | | x^2/(2-2x)^2=8.4 | | (3x-1)^2/6=0 | | -7+5x=-3 |